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THIRD-ORDER CONTRIBUTIONS TO ELECTRICAL

CONDUCTION IN PLASMAS

By Willard E. Meador

Langley Research Center

SUMMARY

The electrical conductivity is calculated for a highly nonequilibrium plasma corre-

sponding to the application of an electric field varying linearly with time. Two methods

are employed: (1) the direct approach consisting of an exact solution to a modification of

the third-order kinetic equation of Chapman and Enskog, and (2) Everett’s technique for

closing out the macroscopic equations of change with the Grad 13-moment velocity dis-

tribution function. Comparisons between the two sets of results indicate substantial

third-order differences for most interparticle interaction potentials of practical interest;

hence, the Grad 13-moment approximation does not appear to describe adequately certain

higher order contributions to plasma transport coefficients.

INTRODUCTION

Highly nonequilibrium plasmas corresponding to large electron currents are of

considerable interest in such potential applications as high current pinches, arcs, and

discharges and in the description of phenomena occurring near electrodes and in low-

pressure discharges. Departures in the formulation of problems of this type from those

satisfying the ordinary linear flux theory are usually reflected in the dependence of

transport coefficients upon the electron diffusion velocity.

Examples of the more rigorous treatments of high current plasmas include the use

of Grad’s 13-moment velocity distribution functions by Everett (ref. 1) and Yen (ref. 2) in

closing out the macroscopic equations of change for the number densities, diffusion

velocities, heat fluxes, and pressure tensors. Such procedures yield relations between

the 13 moments and the applied force fields and also between the moments themselves,
the accuracies of which depend in large measure upon the ability of the Grad approxima-

tion to predict the various collisional transfer terms adequately. Previous investiga-

tions of this ability have been performed by Meador (ref. 3) for first-order relations

between the heat flux, the entropy density, the entropy density production rate, and the

electron diffusion velocity, and for second-order contributions to the electron pressure
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tensor. Similar tests of Everett’s and Yen’s higher order corrections to the electrical

conductivity have not been reported.

The purpose of the present research is to derive the high velocity electrical con-

ductivity of a simple plasma from an exact solution to a modification of the third-order

kinetic equation of Chapman and Enskog (ref. 4). Comparisons with similar calculations

employing the aforementioned Everett procedure yield the following results: (1) signifi-

cant differences occur in the contributions to the current density which are proportional

to the cube of the electron diffusion velocity, and (2) the reliability of the Grad

13-moment approximation is strongly dependent upon the interparticle interaction poten-

tials in that it is especially poor for very soft and very hard molecules. The second

result is understandable in light of the fact that the Grad approximation is an expansion

(ref. 5, p. 22) in the eigenfunctions of Boltzmann’s binary elastic collision operator for

Maxwellian molecules; consequently, a rapid convergence for more general force laws is

not guaranteed.

The particular plasmas chosen for this study are those for which the following con-

ditions are applicable: the electron collisions obey the collision model recently devel-

oped by Meador (ref. 6), the heavy particles are infinitely massive and at rest relative to

the laboratory, the applied and induced magnetic fields are zero (the latter in strict vio-

lation of Maxwell’s equations, but consistent with a nonrelativistic treatment), all macro-

scopic quantities are spatially homogeneous, and the applied electric field is proportional

to the time.

SYMBOLS

a electric field parameter defined in equation (3)

A ratio of collision integrals defined by equation (21)

b impact parameter

Cg electron particle velocity relative to laboratory frame of reference

Ci^ heavy-particle particle velocity

e magnitude of electron charge

E applied electric field

fg electron distribution function
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fg Maxwellian contribution to electron distribution function

f^ heavy-particle distribution function

gi,g2,. .,gg trial functions appearing in equation (18)

i,j index numbers

electron current density

k Boltzmann’s constant

k unit vector in z-direction

mg electron particle mass

ng electron number density

n^ number density of heavy particles

pg electron partial pressure

o

Pg traceless electron pressure tensor relative to laboratory frame of reference

o^
Pg traceless electron pressure tensor relative to electron frame of reference

Rij integral defined by equation (10)

s entropy density

s" equilibrium entropy density

Sc collisional production rate of entropy density

t time

T electron temperature corresponding to zero electron diffusion velocity

Tg electron temperature relative to laboratory frame of reference

3



T’ electron temperature relative to electron frame of reference

u" reduced electron particle velocity relative to electron frame of reference

Vg electron diffusion velocity

x y z Cartesian coordinates; also used as subscripts to indicate vector and tensor

components; in addition, x is used as an integration variable

Xe electron body force per unit mass

cr third-order electrical conductivity parameter

;3 reduced electron diffusion velocity

~B’ reduced heat flux relative to electron frame of reference

9" reduced electron particle velocity relative to laboratory frame of reference

e azimuthal angle for collisions

77 conductivity parameter defined by equation (55)

^ interparticle interaction parameter

a electrical conductivity for zero electron diffusion velocity

cr effective electrical conductivity through third order

T, collision time for electron diffusion

To collision time for entropy production

(b-,,(pc,,<pr, first-, second-, and third-order electron perturbation functions, respectively

^ scattering or deflection angle

(8fp/3t) collisional time derivative of fe
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Primed quantities in collision integrals refer to conditions after a collision;

unprimed quantities, before a collision. When vector symbols appear without an arrow,

the magnitude of the vector is denoted. The symbol ^ ^ indicates an average over

velocity space.

KINETIC THEORY

The derivations of high-velocity electrical conductivities and other plasma trans-

port coefficients are usually based in some manner upon the electronic Boltzmann equa-

tion (ref. 4)
/0

8fp /2kT\ / me X172^ 8fe f^e\-e + [--e 7r vfe + -e^ ^ -^ b^ (1)
8t \me 7 e ^kT^ ^ ^ /c

where 7 is the reduced electron particle velocity defined by

/ \1/2
7 ^} Ee P)

l91rT1\ZKle/

and T0 is the electron temperature at zero electron diffusion velocity.

If the time-dependent electric field and electron velocity distribution function are

expressed as

E kat (3)

and
Q /O

fe ^(l + <^ + (^2 + ^) "efg^) e-^(l + 0i + ^ + ^ (4)

respectively, the following simplification of equation (1) is obtained from the application

of the special conditions outlined in the Introduction and the resulting stipulation from the

electron equation of continuity that n@ is constant:

5
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iiiiii urumiiiii

!fe^^3) ,W^% . , ) ^^iat "MakT0/ v / ^z
r’ -e/

-l-[-e\ -J- C f^h 4^1 ^e ^h b db de d^h(o)^t^ (o) J ^ e h e hy| e h

-e ^
/ o\172

J Ce(fe fe)fhb db de d^ -W2^) J(<h + ^2 + ^3 ^1 ^2 ^^ db de

^e
(5)

More specifically, the successive simplifications of the collision integral in equa-
tion (5) correspond to the assumptions that the heavy particles are fixed scattering cen-

ters for the electrons and that electron-electron collisions can be explicitly neglected at
this stage. The latter assumption is part of Meador’s collision model (ref. 6), the

remainder of which outlines the method whereby the single electron-heavy-particle
interaction potential can be generalized semiempirically to include the effects of multiple

heavy species as well as electron-electron encounters. These more detailed aspects of

the collision model will appear subsequently in the form of an effective interaction

parameter ^, which mathematically (but not physically) assumes the role of the exponent
in an inverse-power electron-heavy-particle interaction potential. No restrictions are

yet placed upon the characteristics of the unknown functions (pi, 0o, and cf>^.
The method adopted in the present research for the direct solution of equation (5)

involves the following three statements: (1) the velocity distribution function is analytic
in the small electric field parameter a, (2) the unknown function ip., which is also small

and satisfies 0i > ^+1, contains only the ith power of a, and (3) the index number i of

^i designates the order of solution. Hence, the retention of functions through ^3
implies a third-order solution in the sense that contributions to fg of all sft terms are

included. Of particular significance in this procedure is the fact that the corresponding
first-order form of equation (5), which is written as

/9 / \ ^-/^
^l 2eat/I"e \ f2kT\ p ,N-i + j^ -6_ n [--e /^ 0 b db de (6)
91 me \2kT^ V^ / J v

differs from that of Chapman and Enskog (ref. 4) in the explicit appearance of 0< on the

left-hand side.
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Equation (6) is further simplified by the assumption that <p^ is y,, multiplied by
a function of y and possibly the time. The following equation results

^1 2eat/me \l/2 ^13 1 --t

^+^^) ^-HO^ 601 <7’

when the T-dependent collision time

nipO,-.
^o ---2 (8)

e"n@

and the collision integral (ref. 6)

/ \1/2 _4
( f^z Vz)b db de ^p^ y ^ (9)J v z/ nhR04ro\2kT^

are employed. The R^- integrals are defined by

4i,
c>o ’"(" ’.I 2

R,, Xs e-^ dx (10)
"O

As mentioned previously and explained in detail in reference 6, the semiempirical

interaction parameter ^ in equations (7), (9), and (10) appears formally as the exponent
in an inverse-power electron-heavy-particle interaction potential and can be so chosen

as to make the present theory reliable for many real plasmas (electron-electron colli-

sions included). Only in the case of Lorentz plasmas (slight ionization or fully ionized

gases with large ionic charges), however, can , be physically identified with such an
exponent, the value of which may range from unity (Coulomb forces) to infinity (rigid
spheres). Even if the generalization is not possible, the present analysis would still

accomplish its primary purpose of evaluating the capability of Grad 13-moment distribu-

tion functions to describe highly nonequilibrium situations.

An exact solution of equation (7) is readily found to be

2_eaRM^[ ^ \l/2 ^ 1( RMTo t-\
^ -^^-^) y’ ( ^iT 7 /z (11)
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so that the first-order current density becomes

/ \^2
T -e<^ -^?) Je-^ .^^4) (.)

if Tg is given by

^ RM?2 ^ <")

R13

The Tg of equation (13) is shown in reference 6 to be never less than TQ nor

more than twice TQ and to satisfy the entropy-production definition

\TgSc s() s (14)

Accordingly, Tg is called the characteristic time for the collisional production rate of

entropy and appears as a convenient parameter in many applications; for example, the

kinetic theory expression of the Hall conductivity for small magnetic fields assumes the

simple mean-free-path form if Tg is substituted for Ty. The present interest lies, of

course, in the fact that Tg acts as a lower limit for t in the expression for the cur-

rent density, and thereby signifies the size of the time scale inherent in the Boltzmann

collision integral.

As a final comment on the first-order solution, it is immediately obvious from

equation (11) that an upper limit on the time (and thus the electric field) must exist if

(f)-, is to be small compared with unity. This requirement, however, does not create any

special problems prior to the consideration of i^, and will be discussed again at that

point.

SECOND-ORDER SOLUTION

The substitution of equation (11) and its velocity derivative

^^2eaRo,T /_me_\l/2 f- 3 ^^ j1 R? ,f- 1^ ^ ^ ^8yz meKl3^ \2kT \L ^ z] ^13 L ^
8



into equation (5) yields

^ ^,W-^fL^ !^ .e2^ ^ ^ (^ . i ^8t 9t me\2kT/ ^ 2 8yj nigkT^R^^ L -I

4 -^ / vl/2

]^ yr lEy2 2(^2 + ^ 4)y^ -nh7(^e) ^ (^ ^S ^ ^)11 ^ ^ <16)

The second-order form of equation (16) is obtained as follows by deleting all terms

corresponding to a3:

/"

^ ^ e2a2^ ^- 3 r ^
n

^ t- ^^8t mekTRi3^ L v / -J ^13 L. \ / ^J

l2^2 c/ ^-^^ ^2 ^)b db d

(17)

If a second-order function of the type

<^2 [gi(y) + g2(Y)t + es^2^ y2) + ^M^ + 65^)^ (18)

is assumed, the following equation results:

2e2a2R2 r2f2 |- 4j 2Rp4To ^- Ir

^ --.--4 ^ ^ 3A 2^2 + ^ 4) -^ y^ (3A + 4)^y2
27A"mekTR^ "IS1 L

-i / OT? 1\ i->2^2-D +3 1, (3A -. 2)a 4^ 1 2R^ ^ 3yj y2L e a

^ y^ 4 ^2 , 2
J \ SAR^t yj \ / l8mekTRi3^

SRo^o ^-^ ^ s) (19)
R^t \ l_

9



by using the collision integral

1/2 4

(Yyg y^b db d^
AR13 j^ y ^yJ yS) (20)A72 y^ 2^1^^ v /

derived in reference 6. The quantity A is the ratio of collision integrals

f (l cos^b db

A ^0 ’ (21)
p0

\ (1 cos x)b db
^0

Equation (19) is automatically normalized in the sense that

Jf^^ dc-e O (22)

In addition, the temperatures Te and Tg relative to the laboratory and electron

frames of reference, respectively, are given by

^^^^-^ ^(l ^^ <-

and

^^^4^ ^-^ ^ <24’

where ^ is the magnitude of the reduced electron diffusion velocity defined as

/ \172

^ Po ^ (25)
\2kT^

It is further noted that the use of equation (12) in the time derivative of equa-

tion (23) yields the principle of conservation of energy

dTpJ nek-^ E (26)

for this problem; thus, all the pertinent auxiliary conditions relative to ne and Te are

satisfied by the ^g of equation (19).
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Because sizeable values of T^/t are not especially important, it is convenient

now to examine the second-order solution after Tg/t has become small compared with

unity. The neglect of squares and higher powers of this time ratio in equation (19) gives

^^^- if , ,^,t-3 ^ , , ^ ,.)
9mekTRi3^ AR!^-

3^2(2^2 ^ 8) I (27)
4 \

and thus

^exy ^exz ^eyz 0 (28)

and

o o o / 2 \ 64(^ + l)T pj32 / Ts\-2
Pezz -2Pexx -2Peyy neme ^Cez) Pe --^ (l -^ (29)

^as the components of the traceless electron pressure tensor Pg relative to the labora-

tory frame of reference.

Since the traceless electron pressure tensor relative to the electron frame of ref-

erence has a zz-component given by

o // ^2\ o 4p fi2
Pezz neme ((cez Ve) ) "e^Te ^zz -j- (30)

the following equation can be written:

o 4p j32 160 + DT
Pezz "^-- ,-,, ^ l (31)

3 IBA^TQ

from equations (29) and (30) if Tg/t is neglected. In particular,

PezzO 1) 1.42pe,32 (32)

as compared with the Grad value of 1.17p /32 from reference 3.
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THIRD-ORDER SOLUTION

The magnitude of Ty/t is next assumed to be the same order as the reduced elec-

tron diffusion velocity /3 for the purpose of solving the third-order kinetic equations.

Since TQ times the third term on the left-hand side of equation (16) can be written as

/ 9^-^ ^with the aid of equations (12) and (25), and since the next to last term in the (^ of equa-

tion (19) similarly becomes

^.t ^ ^9^37-0 \ /

the combination of these two expressions is proportional to ^|^o and is therefore of

order f32 in magnitude and third order in the electric field parameter a. The corre-

sponding contributions from the remaining terms of cf>^ have orders of magnitude /33,
^, and /3^ and are neglected in the present section.

It is further evident from the contribution to cf)^ which is retained, and which

includes the factor t/Ty, that some such establishment of the order of magnitude of

TQ/t (and hence the introduction of an upper limit to the elapsed time and the applied

electric field) is necessary in order for 0g to be kept smaller than (^ and thus for

the present expansion to be convergent. This aspect was previously anticipated.

The appropriate reductions in equation (19) and its velocity derivative for use in

equation (16) are

2e2a2R^T t3 ^- l
\

<h ---^- ^ kr2 ^ 2) (33)
9mekTeRi3^ v /

and

8<^ 20^^.1 T t3 7-3r ~1__2= ----OA O ^ \^ + 4)y2 + 0 + 2)0; 4)k (34)
8yz 9mekT^Ri3^2 L J

Thus, the third-order kinetic equation becomes
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^^_^p^i^p-3r

^ ^ ,^ ^^
j

at 9m^kTRi3^\2kT^ L J

-W^j J (^3 ^b db d6 (3 5)

Equation (35) can be solved in a similar manner to equation (6) to yield

4RQ^ Et Ang_\ ^ |^2^ ^3^ e^2. (^ 2)(^ 4)1^ (36)
9eneR^rTo\2kT^ L J

through the leading contribution. Accordingly, if the current density is expressed as

T -eng^ce) aTl + o-(^) ^E^l ^) (37)

the electrical conductivity parameter a is derived from the velocity moment of equa-

tion (36) to be

^
_4(^ 2)q 4)r,t

^9^ + 8)T2

A brief analysis of the essential features of this entire development shows the

leading term of the fifth-order contribution to the current density to be proportional to

t3^(t/To\ which is third order in magnitude if TQ/I and /3 are regarded as first order

in magnitude. Equations (37) and (38) thus represent the complete description of

through terms which are third order in a and second order in magnitude. They also

comprise the exact third-order result mentioned in the Introduction as a purpose of the

present research.

THE GRAD APPROXIMATION

The final effort of the present research is the determination of a using the Grad

13-moment approximation with Meador’s collision model (ref. 6) to close out the macro-

scopic equations of change. Numerical comparisons with equation (38) should yield valu-

able insight into the applicability of this technique to highly nonequilibrium plasmas
because a completely common framework (that is, basic assumptions and expansions in

powers of the electric field parameter a) is provided for both methods. Hence, the

13



preceding exact solutions are unquestionably the correct standards for such comparisons

and the only critical question is whether the 13-moment function adequately satisfies the

pertinent kinetic equations or their moments.

Although not necessary, a direct confirmation of the statement that the preceding

exact solutions are the correct ones is obtained from reference 3. Additional moments

caused the Grad approximation to converge rather rapidly toward similarly derived exact

solutions in that application.

Since Everett’s velocity distribution function (ref. 1) can be written as

o /o

fe "-fe) e-u2 ’ + i("2 l^ r+ ("e^)’1^ ^ tW
^TTKlg/ \

when the reduced heat flux and the reduced electron particle velocity relative to the elec-

tron frame of reference are defined by

J\ (u2{T> (40)

and

u- f-^Y^c-e v-e) (41)
\2kT_y \ e e/
\ "/

respectively, the following third-order closed-out expressions are obtained from the

mpCgz ^d meclcez moments of equation (1) and the use of equations (9) and (39) in

evaluating the collision integrals:

(^ 4)^ ^kT.V72
Vp +-----’--e] 0 42)e 5^ \me

and

^
(3, ^^ l^i^E

^5^ \me 9eneRi3R_i^(3^ 2)^

As in the preceding exact development which culminated in equations (36) to (38), all but

the leading ^i/Ty terms have been deleted from these expressions.

The simultaneous solution of equations (42) and (43) finally gives

5(^ ^.ta^E
Ve(third order) (44)

9ene(3^ 2)R^R_^^o

14



so that

50 ^R^ta^
j (third order) -erigVeO-hird order) -__-_---- E (45)

V(d, Z)R^R_^ ^TQ

A direct determination of Q! from equation (45), however, is not possible unless
the Grad approximation also yields equation (12) through first order in a. In particular,,
adjustments may have to be made in order to account for differences between the predic-
tions of OQ by the exact and Grad methods. This calculation starts with the following
first-order closed out expressions analogous to equations (42) and (43):

1/2
c^ ^eA ^^^^^ ^ ^dt "^2kT^ 5R4^ L _J

and

^1 5 dB 5eat/me V72 ^S11-! 5^ 2) F H-A + ^ + oeat-e- 1J 1’0,---- 5^/3 + (3^ 4);3 (47)
dt 2 dt 2mel2kT^ 5R^^To L ^

The simultaneous solution of equations (46) and (47) gives

R^(l3^2 16^ + 16)aoE /me N172 R^R^g^Q^4 496^3 + 832^2 512^ + 256)Tg
4eneRl3R-i,5(3^ 2)^2kT^ ’H^1^!^3^ 2)(l3^2 16^ + 16)^t

(48)
and

5R^(^ 4)a E /m, N172 RO.R, 3(23^2 i6^ + 16)rg
i3 u-t------- -e-. 1 u4 lov ----/-- (49)

4eneRi3R_i^(3^ 2) bkTy 4R22R_i^(3^ 2^t

Accordingly, equations (45) and (48) combine to yield

R^ds^ lQ^ + l^Qr ^ R.4R^fl79^4 496^3 + 832^2 512^ + 256^
J -^------------ 1 + o’(0 S32 E 1 u4 ’"^ ------^--.-------^--/-

4RigR_^ 5(3^ 2)^ L J 4R3gR_^ g(3^ 2)(l3^2 16^ + 16)^t
(50)

and

^
.__OM^)__ (,
9^13^ 16^ + 16; To

if proper regard is taken of the order of magnitude consistent with this development.
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Percentage errors in the ratio of Grad to exact conductivities are obtained from

ao(Grad) R^2 16^ + 16)
(52)

CTO 4Ri3R_i^(3^ 2)^

and range from -4.3 at , 1 through 0 at ^ 4 to -4.3 at ^ . As mentioned in

reference 3, on the other hand, a somewhat different picture prevails for the heat flux

because equation (49) must be compared in that case with

(g ^aoE/me Y72/ 2rs\

^ ^ ^Tj \ i

from the energy moment of equation (11). For example, Grad’s result is in error by

-26 percent at ^ 1, if Tg/t is neglected when compared with unity.

COMPARISONS OF RESULTS

A convenient summary of the preceding research on electrical conduction (through

second-order terms in magnitude and third order in a) is provided by the expression

T aE (54)

where o is the effective electrical conductivity defined by

a Oy(exact or Grad)[l r]rs- + aW (55)

The parameter T] assumes the values

i7(exact) 1 (56)

from equation (37) and

Wl^4 496^3 + 832^2 512^ + 256) (57)7?(Grad) ------!-- --,---------^^--- ^^
4R22R_i 5(3^ 2)(l3^2 ^ + 16)^

from equation (50), whereas the formulas for a are given in equations (38) and (51).

Numerical calculations appropriate to equations (54) and (55) are presented in

tables I and II for a variety of effective interparticle interaction potentials ranging from

the fully ionized Lorentz plasma (^ 1) to a gas of rigid spheres (^ ). Only in the

neighborhood of Maxwellian molecules (^ 4) is the Grad 13-moment approximation
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adequate for the determination of a, the error being very significant for both softer and

harder force laws. The differences however are more tolerable in the case of T],

TABLE I." THE ELECTRICAL CONDUCTIVITY PARAMETER a AS A FUNCTION

OF THE EFFECTIVE INTERPARTICLE INTERACTION PARAMETER ,
AND THE METHOD OF SOLUTION

, ^oA (Grad) o^o/4 (exact)

1 0.513 0.859
2 .247 .196

4 .000 .000

-.171 -.524

TABLE H.- THE ELECTRICAL CONDUCTIVITY PARAMETER T} AS A FUNCTION

OF THE EFFECTIVE INTERPARTICLE INTERACTION PARAMETER ,
AND THE METHOD OF SOLUTION

^ ?7(Grad) 7?(exact)

1 0.759 1.000

2 1.011 1.000

4 1.000 1.000

.861 1.000

CONCLUDING REMARKS

Calculations through third order in the electric field have indicated that large

errors can occur when the Grad 13-moment velocity distribution function is used to close

out the macroscopic equations of change. Except in the neighborhood of Maxwellian force

laws, the only transport coefficient (among those considered) for which the Grad approxi-

mation yields accurate results is the first-order electrical conductivity. The difficulties

begin with the first-order heat flux relative to the electron frame of reference and the

leading contribution to the traceless electron pressure tensor, each of which is in error

by 20 to 30 percent for very soft or very hard interaction potentials, and are magnified

many times in the case of third-order transport phenomena. Although the plasma chosen

for the present work is a hypothetical one, this trend of the Grad 13-moment approxima-

tion toward greater (and problem-dependent) discrepancies seems to be well established
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for highly nonequilibrium systems; consequently, some of the past research on large

electron diffusion velocities should perhaps be reevaluated.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Station, Hampton, Va., August 19, 1969.
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